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Abstract

In this paper, we study a nonautonomous size and class age structured epidemic model with
nonlinear and nonlocal boundary conditions. We establish a comparison principle and construct
convergent monotone sequences to prove the existence of solutions. Uniqueness of solutions is
also established.

1 Introduction

In previous research literature, infectious disease dynamics are often modeled via systems of ordi-
nary differential equations in which population structures such as age, size, sex, etc., are neglected.
However, there are many cases in which incorporating some of the population structures into the
model may provide additional and important information, and may be helpful in the understanding
of disease dynamics. For example, it was suggested by the author in [16] that the age-structured
seasonal interaction rates of measles that are due to school attendance may cause oscillations that
are not described in corresponding models without age structure.

In this paper, we consider a three compartment model with a susceptible state, exposed state
(latent state), and infectious state for the spread of a directly transmitted disease in a size-structured
population. We assume that the disease under consideration is fatal so that no recovery occurs. We
also assume that the disease is transmitted only horizontally, and that every newborn is susceptible
to infection. Note that for many diseases there may be some delay between the initial latent state
and infectious state. Furthermore, it is not biologically realistic to expect all the individuals to
progress into the infectious state at a fixed time period after the initial latent infection. Additionally,
individuals in the infectious state may have dramatically varying mortality rates depending on the
times that they progress into the infectious state. Hence, in addition to size we also need to record
the class age or residency time of the exposed and infectious states, i.e., the length of time the
individuals have spent in their present state. Thus, the individuals in the exposed and infectious
states are structured by two internal variables: size and class age.

To our knowledge, the paper [17] by Sinko and Streifer was the first appearing in the literature
on structured population models with multiple internal variables in which the populations are
categorized by chronological age and size. Although their simplified version with size only as the
internal variable (the classical size-structured population model) has been studied extensively in
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past decades, the original version has not been as thoroughly investigated. We have found structured
models with multiple internal variables for describing cell dynamics ([5, 10, 11, 12, 14]) and epidemic
dynamics ([13, 18]). For example, the authors in [12] studied an autonomous linear chronological
age and size structured cell population model that has both normal and quiescent individuals; the
theory of positive operator semigroups was used to show that, under general assumptions about
individual behavior, the age-size distribution of the population converges to a stable distribution.
A proliferating cell population structured by chronological age and maturity was studied in [10]
where existence and uniqueness of the solutions was established via the method of characteristics.
This model was then extended to a nonlinear one in [11] with a nonlinear term corresponding to loss
of individuals due to crowding; existence and asymptotic behavior of solutions were studied using
semigroup operator theory. The authors in [5] investigated a linear population model describing
cellular division with both quiescent and proliferating cell populations structured by chronological
age and maturity of the cell in which a proliferating phase duration depends on the maturity of
cells. The existence and uniqueness of solutions were established using semigroup theory by first
summing over the chronological age to reduce the model to a system of size-structured delay partial
differential equations with the time delay depending on maturity.

Modern analysis of structured epidemic models with multiple internal variables apparently be-
gan with the work by Hoppensteadt in [13] and Waltman in [18], where the population is structured
by chronological age and class age. In [15] a general model of a population structured by several
internal variables is formulated as a nonlinear integral equation, and existence, uniqueness and
positivity of solutions is established using the method of characteristics, the contraction mapping
theorem and semigroup theory.

The goal of this paper is to establish the existence and uniqueness of the solutions to the system
(2.1) described below by defining upper and lower solutions, establishing a comparison principle
and constructing monotone approximations. Using this approach, we replace the true solution in
all the nonlinear and nonlocal terms with some previous estimate for the solution. We then solve
the resulting linear model and obtain a new estimate for the solution. This iterative procedure
yields the solution of the original problem by passing to the limit. The method also provides an
explicit solution representation for each of the iterates. Thus, an efficient numerical scheme can be
developed. The key step involved is a comparison principle between consecutive estimates [3]. This
method has been used in both linear and nonlinear size-structured population models for a number
of systems (e.g., [1, 2, 4]). However, we believe ours is the first paper which uses this method to
study a structured model with multiple internal variables.

The models we consider here include as a special case the general models in [6]. These models
were developed as part of a biomass vaccine production system wherein shrimp protein pathways
are co-opted for rapid production via recombinant protein transfection. In [6] the authors used
simulation studies to investigate the efficacy of such a production system as a first response coun-
termeasure to toxic attacks. We provide here a well-posedness theoretical foundation for the systems
developed in these applications.

The outline of this paper is organized as follows: We present our model in Section 2. We then
establish a comparison principle and argue the uniqueness of solutions of our model in Section 3.
Monotone sequences are constructed in Section 4 to establish existence of solutions for our model.
We present concluding remarks in Section 5.
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2 Size and Class Age Structured Epidemic Model

The model we consider here is given by

St(x, t) + (gS(x, t)S(x, t))x + mS(x, t)S(x, t) = −S(x, t)
∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, t)dθdy

gS(0, t)S(0, t) = F (S(·, t), E(·, ·, t), I(·, ·, t))
S(x, 0) = S0(x)

Et(x, θ, t) + (gE(x, t)E(x, θ, t))x + Eθ(x, θ, t) + mE(x, t)E(x, θ, t) = −ρE(θ)E(x, θ, t)

E(x, 0, t) = S(x, t)
∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, t)dθdy

E(0, θ, t) = 0, E(x, θ, 0) = E0(x, θ)

It(x, θ, t) + (gI(x, t)I(x, θ, t))x + Iθ(x, θ, t) + mI(θ)I(x, θ, t) = 0

I(x, 0, t) =
∫ ∞

0
ρE(θ)E(x, θ, t)dθ

I(0, θ, t) = 0, I(x, θ, 0) = I0(x, θ),

(2.1)

where (x, θ, t) ∈ [0, xmax]× [0,∞)× [0, T ], and

F (S(·, t), E(·, ·, t), I(·, ·, t))
=

∫ xmax

0
βS(x)S(x, t)dx +

∫ xmax

0

∫ ∞

0
βE(x, θ)E(x, θ, t)dθdx +

∫ xmax

0

∫ ∞

0
βI(x, θ)I(x, θ, t)dθdx.

Here S(x, t) denotes the density of individuals in the susceptible state having size x at time t,
E(x, θ, t) denotes the density of individuals having size x at time t that have spent θ time units in
the latent (exposed) state, and I(x, θ, t) denotes the density of individuals having size x at time t
that have spent θ time units in the infectious state. The functions gS(x, t), gE(x, t) and gI(x, t)
are the growth rates of the individuals having size x at time t in the susceptible state, latent state,
and infectious state, respectively. The functions mS(x, t) and mE(x, t) are the mortality rates of
the individuals having size x at time t in the susceptible state, and latent state, respectively, and
mI(θ) is the mortality rate of individuals having spent θ time units in the infectious state. The
function βS(x) represents the fecundity rate of individuals having size x in the susceptible state.
The functions βE(x, θ) and βI(x, θ) denote the fecundity rates of the individuals having size x that
have spent θ time units in the latent state, and infectious state, respectively. The function λ(x, θ)
denotes the infection rate of individuals having size x that have spent θ time units in the infectious
state. The function ρE(θ) represents the rate at which individuals having spent θ time units in the
latent state become infectious.

For convenience, we will use the following notation throughout the paper:

DS = (0, xmax)× (0, T ), DEI = (0, xmax)× (0,∞)× (0, T ),

DEI
xθ = (0, xmax)× (0,∞), DEI

n = (0, xmax)× (0, n)× (0, T ).

The space C1
0,r(D

EI) is defined by:

{φ ∈ C1(DEI)| there exists some constant θφ > 0 such that φ(x, θ, t) = 0 for θ > θφ},
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and the space C1
0,r(D

EI
n ) is given by

{φ ∈ C1(DEI
n )| there exists some constant 0 < θφ < n such that φ(x, θ, t) = 0 for θ > θφ}.

The following standing hypotheses will be assumed throughout the paper:

(H1) The individual growth rates satisfy gS , gE and gI ∈ C1(DS). We further assume that
gS(x, t) > 0, gE(x, t) > 0 and gI(x, t) > 0 for (x, t) ∈ [0, xmax) × [0, T ] with gS(xmax, t) = 0,
gE(xmax, t) = 0 and gI(xmax, t) = 0 for t ∈ [0, T ].

(H2) The mortality rates mS ,mE ∈ L∞(DS) and mI ∈ L∞(0,∞) are nonnegative functions.

(H3) The fecundity rates βS ∈ L∞(0, xmax) and βE , βI ∈ L∞((0, xmax)×(0,∞)) are all nonnegative
functions.

(H4) The latent to infectious rate ρE ∈ L∞(0,∞) is a nonnegative function.

(H5) The infection rate λ ∈ L∞((0, xmax)× (0,∞)) is a nonnegative function.

We now give the precise definition of the solution for the model (2.1).

Definition 2.1. (S(x, t), E(x, θ, t), I(x, θ, t)) is a solution of (2.1) if all of the following conditions
hold:

(i) S ∈ L∞((0, T );L1(0, xmax) ∩ L∞(0, xmax)) and E, I ∈ L∞((0, T );L1(DEI
xθ ) ∩ L∞(DEI

xθ )).

(ii) S(x, 0) = S0(x) a.e. in (0, xmax), E(x, θ, 0) = E0(x, θ) and I(x, θ, 0) = I0(x, θ) a.e. in
(0, xmax)× (0,∞).

(iii) For every t ∈ (0, T ), every φS ∈ C1(DS), φE ∈ C1
0,r(D

EI) and φI ∈ C1
0,r(D

EI), we have

∫ xmax

0
S(x, t)φS(x, t)dx

=
∫ xmax

0
S(x, 0)φS(x, 0)dx +

∫ t

0
φS(0, s)F (S(·, s), E(·, ·, s), I(·, ·, s))ds

+
∫ t

0

∫ xmax

0
[φS

s (x, s) + gS(x, s)φS
x (x, s)−mS(x, s)φS(x, s)]S(x, s)dxds

−
∫ t

0

∫ xmax

0
S(x, s)φS(x, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, s)dθdy

]
dxds,

(2.2)

∫ xmax

0

∫ ∞

0
E(x, θ, t)φE(x, θ, t)dθdx

=
∫ xmax

0

∫ ∞

0
E(x, θ, 0)φE(x, θ, 0)dθdx

+
∫ t

0

∫ xmax

0

∫ ∞

0
[φE

s (x, θ, s) + gE(x, s)φE
x (x, θ, s) + φE

θ (x, θ, s)]E(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
[mE(x, s) + ρE(θ)]E(x, θ, s)φE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0
S(x, s)φE(x, 0, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, s)dθdy

]
dxds,

(2.3)
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and
∫ xmax

0

∫ ∞

0
I(x, θ, t)φI(x, θ, t)dθdx

=
∫ xmax

0

∫ ∞

0
I(x, θ, 0)φI(x, θ, 0)dθdx +

∫ t

0

∫ xmax

0
φI(x, 0, s)

∫ ∞

0
ρE(θ)E(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0

∫ ∞

0
[φI

s(x, θ, s) + gI(x, s)φI
x(x, θ, s) + φI

θ(x, θ, s)]I(x, θ, s)dθ dxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
mI(θ)I(x, θ, s)φI(x, θ, s)dθdxds.

(2.4)

3 Comparison Principle and Uniqueness

In this section, we give the definition of upper and lower solution of (2.1) and establish a comparison
principle. Then we show that (2.1) has at most one solution.

Definition 3.1. A pair of functions (S, E, I) and (S, E, I) are called an upper solution and a lower
solution of (2.1), respectively, if all of the following conditions hold:

(i) S, S ∈ L∞((0, T );L1(0, xmax) ∩ L∞(0, xmax)), E, E ∈ L∞((0, T );L1(DEI
xθ ) ∩ L∞(DEI

xθ )), and
I, I ∈ L∞((0, T );L1(DEI

xθ ) ∩ L∞(DEI
xθ )).

(ii) S(x, 0) ≤ S0(x), S(x, 0) ≥ S0(x) a.e. in (0, xmax), E(x, θ, 0) ≤ E0(x, θ), E(x, θ, 0) ≥ E0(x, θ),
I(x, θ, 0) ≤ I0(x, θ) and I(x, θ, 0) ≥ I0(x, θ) a.e. in (0, xmax)× (0,∞).

(iii) For every t ∈ (0, T ), every nonnegative function ψS ∈ C1(DS), ψE ∈ C1
0,r(D

EI) and ψI ∈
C1

0,r(D
EI), we have

∫ xmax

0
S(x, t)ψS(x, t)dx

≥
∫ xmax

0
S(x, 0)ψS(x, 0)dx +

∫ t

0
ψS(0, s)F (S(·, s), E(·, ·, s), I(·, ·, s))ds

+
∫ t

0

∫ xmax

0
[ψS

s (x, s) + gS(x, s)ψS
x (x, s)−mS(x, s)ψS(x, s)]S(x, s)dxds

−
∫ t

0

∫ xmax

0
S(x, s)ψS(x, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, s)dθdy

]
dxds.

(3.1)

∫ xmax

0
S(x, t)ψS(x, t)dx

≤
∫ xmax

0
S(x, 0)ψS(x, 0)dx +

∫ t

0
ψS(0, s)F (S(·, s), E(·, ·, s), I(·, ·, s))ds

+
∫ t

0

∫ xmax

0
[ψS

s (x, s) + gS(x, s)ψS
x (x, s)−mS(x, s)ψS(x, s)]S(x, s)dxds

−
∫ t

0

∫ xmax

0
S(x, s)ψS(x, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, s)dθdy

]
dxds.

(3.2)
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∫ xmax

0

∫ ∞

0
E(x, θ, t)ψE(x, θ, t)dθdx

≥
∫ xmax

0

∫ ∞

0
E(x, θ, 0)ψE(x, θ, 0)dθdx

+
∫ t

0

∫ xmax

0

∫ ∞

0
[ψE

s (x, θ, s) + gE(x, s)ψE
x (x, θ, s) + ψE

θ (x, θ, s)]E(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
[mE(x, s) + ρE(θ)]E(x, θ, s)ψE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0
S(x, s)ψE(x, 0, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, s)dθdy

]
dxds.

(3.3)

∫ xmax

0

∫ ∞

0
E(x, θ, t)ψE(x, θ, t)dθdx

≤
∫ xmax

0

∫ ∞

0
E(x, θ, 0)ψE(x, θ, 0)dθdx

+
∫ t

0

∫ xmax

0

∫ ∞

0
[ψE

s (x, θ, s) + gE(x, s)ψE
x (x, θ, s) + ψE

θ (x, θ, s)]E(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
[mE(x, s) + ρE(θ)]E(x, θ, s)ψE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0
S(x, s)ψE(x, 0, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, s)dθdy

]
dxds.

(3.4)

∫ xmax

0

∫ ∞

0
I(x, θ, t)ψI(x, θ, t)dθdx

≥
∫ xmax

0

∫ ∞

0
I(x, θ, 0)ψI(x, θ, 0)dθdx +

∫ t

0

∫ xmax

0
ψI(x, 0, s)

∫ ∞

0
ρE(θ)E(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0

∫ ∞

0
[ψI

s(x, θ, s) + gI(x, s)ψI
x(x, θ, s) + ψI

θ(x, θ, s)]I(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
mI(θ)I(x, θ, s)ψI(x, θ, s)dθdxds.

(3.5)

∫ xmax

0

∫ ∞

0
I(x, θ, t)ψI(x, θ, t)dθdx

≤
∫ xmax

0

∫ ∞

0
I(x, θ, 0)ψI(x, θ, 0)dθdx +

∫ t

0

∫ xmax

0
ψI(x, 0, s)

∫ ∞

0
ρE(θ)E(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0

∫ ∞

0
[ψI

s(x, θ, s) + gI(x, s)ψI
x(x, θ, s) + ψI

θ(x, θ, s)]I(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
mI(θ)I(x, θ, s)ψI(x, θ, s)dθdxds.

(3.6)

Based on the above definition, we can establish the following comparison principle.

Theorem 3.2. Suppose that all the hypotheses (H1)–(H5) hold. Let (S, E, I) and (S,E, I) be a
nonnegative upper solution and a nonnegative lower solution of (2.1), respectively. Then S ≥ S
a.e. in DS, E ≥ E and I ≥ I a.e. in DEI .
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Proof. Let uS = S − S, uE = E − E and uI = I − I. We have uS(x, 0) ≤ 0 a.e. in [0, xmax],
uE(x, θ, 0) ≤ 0 a.e. in [0, xmax] × [0,∞) and uI(x, θ, 0) ≤ 0 a.e. in [0, xmax] × [0,∞). Choose
nonnegative functions ψS ∈ C1(DS), ψE ∈ C1

0,r(D
EI
n ) and ψI ∈ C1

0,r(D
EI
n ). By (3.1), (3.2) and

uS(x, 0) ≤ 0 a.e. in [0, xmax], we find that for every t ∈ (0, T )
∫ xmax

0
uS(x, t)ψS(x, t)dx

≤
∫ t

0
ψS(0, s)F (uS(·, s), uE(·, ·, s), uI(·, ·, s))ds

+
∫ t

0

∫ xmax

0
[ψS

s (x, s) + gS(x, s)ψS
x (x, s)−mS(x, s)ψS(x, s)]uS(x, s)dxds

−
∫ t

0

∫ xmax

0
uS(x, s)ψS(x, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, s)dθdy

]
dxds

+
∫ t

0

∫ xmax

0
S(x, s)ψS(x, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)uI(y, θ, s)dθdy

]
dxds.

(3.7)

By (3.3), (3.4) and uE(x, θ, 0) ≤ 0 a.e. in [0, xmax]× [0,∞), we obtain that for every t ∈ (0, T )
∫ xmax

0

∫ ∞

0
uE(x, θ, t)ψE(x, θ, t)dθdx

≤
∫ t

0

∫ xmax

0

∫ ∞

0
[ψE

s (x, θ, s) + gE(x, s)ψE
x (x, θ, s) + ψE

θ (x, θ, s)]uE(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
[mE(x, s) + ρE(θ)]uE(x, θ, s)ψE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0
uS(x, s)ψE(x, 0, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, s)dθdy

]
dxds

+
∫ t

0

∫ xmax

0
S(x, s)ψE(x, 0, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)uI(y, θ, s)dθdy

]
dxds.

(3.8)

By (3.5), (3.6) and uI(x, θ, 0) ≤ 0 a.e. in [0, xmax]× [0,∞), we have that for every t ∈ (0, T )
∫ xmax

0

∫ ∞

0
uI(x, θ, t)ψI(x, θ, t)dθdx

≤
∫ t

0

∫ xmax

0
ψI(x, 0, s)

∫ ∞

0
ρE(θ)uE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0

∫ ∞

0
[ψI

s(x, θ, s) + gI(x, s)ψI
x(x, θ, s) + ψI

θ(x, θ, s)]uI(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
mI(θ)uI(x, θ, s)ψI(x, θ, s)dθdxds.

(3.9)

Let ψS(x, t) = exp(τSt)ϕS(x, t), where ϕS ∈ C1(DS) and the constant τS are chosen so that
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τS ≥ ‖mS‖∞ + ‖λ‖∞ sup
s∈[0,T ]

{∫ xmax

0

∫ ∞

0
I(y, θ, s)dθdy

}
. Then by (3.7), we have

∫ xmax

0
uS(x, t)ϕS(x, t)dx

≤
∫ t

0
ϕS(0, s)F (uS(·, s), uE(·, ·, s), uI(·, ·, s))ds

+
∫ t

0

∫ xmax

0
[ϕS

s (x, s) + gS(x, s)ϕS
x (x, s)]uS(x, s)dxds

+
∫ t

0

∫ xmax

0
uS(x, s)ϕS(x, s)

[
τS −mS(x, s)−

∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, s)dθdy

]
dxds

+
∫ t

0

∫ xmax

0
S(x, s)ϕS(x, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)uI(y, θ, s)dθdy

]
dxds.

(3.10)

Let ψE(x, θ, t) = exp(τEt)ϕE(x, θ, t), where ϕE ∈ C1
0,r(D

EI
n ) and the constant τE are chosen so

that τE ≥ ‖mE‖∞ + ‖ρE‖∞. Then by (3.8), we have
∫ xmax

0

∫ ∞

0
uE(x, θ, t)ϕE(x, θ, t)dθdx

≤
∫ t

0

∫ xmax

0

∫ ∞

0
[ϕE

s (x, θ, s) + gE(x, s)ϕE
x (x, θ, s) + ϕE

θ (x, θ, s)]uE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0

∫ ∞

0
[τE − (mE(x, s) + ρE(θ))]uE(x, θ, s)ϕE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0
uS(x, s)ϕE(x, 0, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I(y, θ, s)dθdy

]
dxds

+
∫ t

0

∫ xmax

0
S(x, s)ϕE(x, 0, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)uI(y, θ, s)dθdy

]
dxds.

(3.11)

Let ψI(x, θ, t) = exp(τ It)ϕI(x, θ, t), where ϕI ∈ C1
0,r(D

EI
n ) and the constant τ I are chosen so that

τ I ≥ ‖mI‖∞. Then by (3.9), we have
∫ xmax

0

∫ ∞

0
uI(x, θ, t)ϕI(x, θ, t)dθdx

≤
∫ t

0

∫ xmax

0
ϕI(x, 0, s)

∫ ∞

0
ρE(θ)uE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0

∫ ∞

0
[ϕI

s(x, θ, s) + gI(x, s)ϕI
x(x, θ, s) + ϕI

θ(x, θ, s)]uI(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0

∫ ∞

0
[τ I −mI(θ)]uI(x, θ, s)ϕI(x, θ, s)dθdxds.

(3.12)

We choose a nonnegative function ϕS ∈ C1(DS) that satisfies the following problem

ϕS
s (x, s) + gS(x, s)ϕS

x (x, s) = 0, 0 < s < t, 0 < x < xmax,

ϕS(xmax, s) = 0, 0 < s < t,

ϕS(x, t) = χS(x), 0 ≤ x ≤ xmax,

(3.13)
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where χS ∈ C∞
0 ((0, xmax)) and 0 ≤ χS ≤ 1. We choose a nonnegative function ϕE ∈ C1

0,r(D
EI
n )

that satisfies the following problem

ϕE
s (x, θ, s) + gE(x, s)ϕE

x (x, θ, s) + ϕE
θ (x, θ, s) = 0, (x, θ, s) ∈ (0, xmax)× (0, n)× (0, t)

ϕE(xmax, θ, s) = 0, 0 < s < t, 0 < θ < n,

ϕE(x, n, s) = 0, 0 < s < t, 0 < x < xmax,

ϕE(x, θ, t) = χE(x, θ), 0 ≤ x ≤ xmax, 0 ≤ θ ≤ n,

(3.14)

where χE ∈ C∞
0 ((0, xmax) × (0, n)) and 0 ≤ χE ≤ 1. We choose a nonnegative function ϕI ∈

C1
0,r(D

EI
n ) that satisfies the following problem

ϕI
s(x, θ, s) + gI(x, s)ϕI

x(x, θ, s) + ϕI
θ(x, θ, s) = 0, (x, θ, s) ∈ (0, xmax)× (0, n)× (0, t),

ϕI(xmax, θ, s) = 0, 0 < s < t, 0 < θ < n,

ϕI(x, n, s) = 0, 0 < s < t, 0 < x < xmax,

ϕI(x, θ, t) = χI(x, θ), 0 ≤ x ≤ xmax, 0 ≤ θ ≤ n,

(3.15)

where χI ∈ C∞
0 ((0, xmax) × (0, n)) and 0 ≤ χI ≤ 1. The existence of such ϕS(x, s), ϕE(x, θ, s),

and ϕI(x, θ, s) follows from the fact that all the above problems are linear with local boundary
conditions. The boundary and initial conditions of the above problems imply that 0 ≤ ϕS , ϕE , ϕI ≤
1. Substituting ϕS that satisfies (3.13) into (3.10), we find

∫ xmax

0
uS(x, t)χS(x)dx

≤ µS,S

∫ t

0

∫ xmax

0
uS+(x, s)dxds + µS,E

∫ t

0

∫ xmax

0

∫ ∞

0
uE+(x, θ, s)dθdxds

+µS,I

∫ t

0

∫ xmax

0

∫ ∞

0
uI+(x, θ, s)dθdxds,

(3.16)

where the functions uS+, uE+ and uI+ denote the positive parts of uS , uE and uI , respectively, and

µS,S = ‖βS‖∞ + τS − inf
(x,t)∈DS

mS(x, t) − inf
(x,θ)∈DEI

xθ

λ(x, θ) inf
s∈[0,T ]

{∫ xmax

0

∫ ∞

0
I(y, θ, s)dθdy

}
, µS,E =

‖βE‖∞ and µS,I = ‖βI‖∞ + ‖λ‖∞ sup
s∈[0,T ]

{∫ xmax

0
S(y, s)dy

}
, where DS = [0, xmax] × [0, T ] and

DEI
xθ = [0, xmax]× [0,∞). Substituting ϕE that satisfies (3.14) into (3.11), we obtain

∫ xmax

0

∫ n

0
uE(x, θ, t)χE(x, θ)dθdx

≤ µE,S

∫ t

0

∫ xmax

0
uS+(x, s)dxds + µE,E

∫ t

0

∫ xmax

0

∫ ∞

0
uE+(x, θ, s)dθdxds

+µE,I

∫ t

0

∫ xmax

0

∫ ∞

0
uI+(x, θ, s)dθdxds,

(3.17)

where µE,S = ‖λ‖∞ sup
s∈[0,T ]

{∫ xmax

0

∫ ∞

0
I(y, θ, s)dθdy

}
, µE,E = τE − inf

(x,t)∈DS

mE(x, t) − inf
θ∈[0,∞)

ρE(θ)

and µE,I = ‖λ‖∞ sup
s∈[0,T ]

{∫ xmax

0
S(y, s)dy

}
. Substituting ϕI that satisfies (3.15) into (3.12), we
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have
∫ xmax

0

∫ n

0
uI(x, θ, t)χI(x, θ)dθdx

≤ µI,E

∫ t

0

∫ xmax

0

∫ ∞

0
uE+(x, θ, s)dθdxds + µI,I

∫ t

0

∫ xmax

0

∫ ∞

0
uI+(x, θ, s)dθdxds,

(3.18)

with the constants µI,E = ‖ρE‖∞ and µI,I = τ I − inf
θ∈[0,∞)

mI(θ).

Since (3.16) holds for every χS , we can choose a sequence {χS,k}∞k=1 converging to χS , where

χS(x) =
{

1 if uS(x, t) > 0
0 otherwise

.

Substituting χS,k into (3.16) and using the dominated convergence theorem, we find
∫ xmax

0
uS+(x, t)dx

≤ µS,S

∫ t

0

∫ xmax

0
uS+(x, s)dxds + µS,E

∫ t

0

∫ xmax

0

∫ ∞

0
uE+(x, θ, s)dθdxds

+µS,I

∫ t

0

∫ xmax

0

∫ ∞

0
uI+(x, θ, s)dθdxds.

(3.19)

Similarly we find (3.17) holds for every χE . Hence, we can choose a sequence {χE,k}∞k=1 converging
to χE , where

χE(x, θ) =
{

1 if uE(x, θ, t) > 0
0 otherwise

.

Substituting such χE,k into (3.17), using the dominated convergence theorem, and using the fact
that the constants µE,S , µE,E and µE,I are independent of n, we find

∫ xmax

0

∫ ∞

0
uE+(x, θ, t)dθdx

≤ µE,S

∫ t

0

∫ xmax

0
uS+(x, s)dxds + µE,E

∫ t

0

∫ xmax

0

∫ ∞

0
uE+(x, θ, s)dθdxds

+µE,I

∫ t

0

∫ xmax

0

∫ ∞

0
uI+(x, θ, s)dθdxds.

(3.20)

Similarly, we can find
∫ xmax

0

∫ ∞

0
uI+(x, θ, t)dθdx

≤ µI,E

∫ t

0

∫ xmax

0

∫ ∞

0
uE+(x, θ, s)dθdxds + µI,I

∫ t

0

∫ xmax

0

∫ ∞

0
uI+(x, θ, s)dθdxds.

(3.21)

By the fact
∫ ∞

0
e−θdθ = 1 and (3.19)–(3.21), we have

∫ xmax

0

∫ ∞

0
[e−θuS+(x, t) + uE+(x, θ, t) + uI+(x, θ, t)]dθdx

≤ µ

∫ t

0

∫ xmax

0

∫ ∞

0
[e−θuS+(x, s) + uE+(x, θ, s) + uI+(x, θ, s)]dθdxds,
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where µ = max{µS,S + µE,S , µS,E + µE,E + µI,E , µS,I + µE,I + µI,I}. By Gronwall’s inequality, we
have ∫ xmax

0

∫ ∞

0
[e−θuS+(x, t) + uE+(x, θ, t) + uI+(x, θ, t)]dθdx = 0,

which implies that uS ≤ 0 a.e. in DS , uE ≤ 0 and uI ≤ 0 a.e. in DEI .

Remark 3.3. From the proof of Theorem 3.2, it is easily seen that for any function wS ∈
L∞((0, T );L1(0, xmax)∩L∞(0, xmax)) with wS(x, 0) ≤ 0 a.e. in [0, xmax], if the following inequality
holds for every t ∈ (0, T ) and every nonnegative function ΨS ∈ C1(DS)

∫ xmax

0
wS(x, t)ΨS(x, t)dx ≤

∫ t

0

∫ xmax

0
[ΨS

s (x, s) + g(x, s)ΨS
x (x, s)]wS(x, s)dxds

+
∫ t

0

∫ xmax

0
AS(x, s)wS(x, s)ΨS(x, s)dxds,

(3.22)

with AS ∈ L∞(DS), then wS(x, t) ≤ 0 a.e. in DS .
Similarly, for any function wE ∈ L∞((0, T );L1((0, xmax) × (0,∞)) ∩ L∞((0, xmax) × (0,∞)))

with wE(x, θ, 0) ≤ 0 a.e. in [0, xmax] × [0,∞), if the following inequality holds for every t ∈ (0, T )
and every nonnegative function ΨE ∈ C1

0,r(D
EI)

∫ xmax

0

∫ ∞

0
wE(x, θ, t)ΨE(x, θ, t)dθdx

≤
∫ t

0

∫ xmax

0

∫ ∞

0
[ΨE

s (x, θ, s) + g(x, s)ΨE
x (x, θ, s) + ΨE

θ (x, θ, s)]wE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0

∫ ∞

0
AE(x, θ, s)wE(x, θ, s)ΨE(x, θ, s)dθdxds,

(3.23)

with AE ∈ L∞(DEI), then wE(x, θ, t) ≤ 0 a.e. in DEI .

This remark will be used in Section 4. Next we will show that model (2.1) has at most one
nonnegative solution.

Theorem 3.4. Suppose that the assumptions (H1)–(H5) hold. Then there exists at most one
nonnegative solution for the system of equations (2.1).

Proof. Suppose that there exist two nonnegative solutions (S1, E1, I1) and (S2, E2, I2) for (2.1).
Let vS = S1 − S2, vE = E1 − E2 and vI = I1 − I2. We have vS(x, 0) = 0 a.e. in [0, xmax],
vE(x, θ, 0) = 0 a.e. in [0, xmax] × [0,∞) and vI(x, θ, 0) = 0 a.e. in [0, xmax] × [0,∞). We choose
functions φS ∈ C1(DS), φE ∈ C1

0,r(D
EI
n ) and φI ∈ C1

0,r(D
EI
n ). By (2.2) and vS(x, 0) = 0 a.e. in

[0, xmax], we find that for every t ∈ (0, T )
∫ xmax

0
vS(x, t)φS(x, t)dx

=
∫ t

0
φS(0, s)F (vS(·, s), vE(·, ·, s), vI(·, ·, s))ds

+
∫ t

0

∫ xmax

0
[φS

s (x, s) + gS(x, s)φS
x (x, s)−mS(x, s)φS(x, s)]vS(x, s)dxds

−
∫ t

0

∫ xmax

0
vS(x, s)φS(x, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I1(y, θ, s)dθdy

]
dxds

−
∫ t

0

∫ xmax

0
S2(x, s)φS(x, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)vI(y, θ, s)dθdy

]
dxds.

(3.24)
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By (2.3) and vE(x, θ, 0) = 0 a.e. in [0, xmax]× [0,∞), we have that for every t ∈ (0, T )
∫ xmax

0

∫ ∞

0
vE(x, θ, t)φE(x, θ, t)dθdx

=
∫ t

0

∫ xmax

0

∫ ∞

0
[φE

s (x, θ, s) + gE(x, s)φE
x (x, θ, s) + φE

θ (x, θ, s)]vE(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
[mE(x, s) + ρE(θ)]vE(x, θ, s)φE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0
vS(x, s)φE(x, 0, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)I1(y, θ, s)dθdy

]
dxds

+
∫ t

0

∫ xmax

0
S2(x, s)φE(x, 0, s)

[∫ xmax

0

∫ ∞

0
λ(y, θ)vI(y, θ, s)dθdy

]
dxds.

(3.25)

By (2.4) and vI(x, θ, 0) = 0 a.e. in [0, xmax]× [0,∞), we obtain that for every t ∈ (0, T )
∫ xmax

0

∫ ∞

0
vI(x, θ, t)φI(x, θ, t)dθdx

=
∫ t

0

∫ xmax

0
φI(x, 0, s)

∫ ∞

0
ρE(θ)vE(x, θ, s)dθdxds

+
∫ t

0

∫ xmax

0

∫ ∞

0
[φI

s(x, θ, s) + gI(x, s)φI
x(x, θ, s) + φI

θ(x, θ, s)]vI(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
mI(θ)vI(x, θ, s)φI(x, θ, s)dθdxds.

(3.26)

We choose a function φS ∈ C1(DS) that satisfies the problem

φS
s (x, s) + gS(x, s)φS

x (x, s) = 0, 0 < s < t, 0 < x < xmax,

φS(xmax, s) = 0, 0 < s < t,

φS(x, t) = ΥS(x), 0 ≤ x ≤ xmax,

(3.27)

where ΥS ∈ C∞
0 ((0, xmax)) and −1 ≤ ΥS ≤ 1. We also choose a function φE ∈ C1

0,r(D
EI
n ) that

satisfies the problem

φE
s (x, θ, s) + gE(x, s)φE

x (x, θ, s) + φE
θ (x, θ, s) = 0, (x, θ, s) ∈ (0, xmax)× (0, n)× (0, t),

φE(xmax, θ, s) = 0, 0 < s < t, 0 < θ < n,

φE(x, n, s) = 0, 0 < s < t, 0 < x < xmax,

φE(x, θ, t) = ΥE(x, θ), 0 ≤ x ≤ xmax, 0 ≤ θ ≤ n,

(3.28)

where ΥE ∈ C∞
0 ((0, xmax)×(0, n)) and −1 ≤ ΥE ≤ 1. We further choose a function φI ∈ C1

0,r(D
EI
n )

that satisfies the problem

φI
s(x, θ, s) + gI(x, s)φI

x(x, θ, s) + φI
θ(x, θ, s) = 0, (x, θ, s) ∈ (0, xmax)× (0, n)× (0, t),

φI(xmax, θ, s) = 0, 0 < s < t, 0 < θ < n,

φI(x, n, s) = 0, 0 < s < t, 0 < x < xmax,

φI(x, θ, t) = ΥI(x, θ), 0 ≤ x ≤ xmax, 0 ≤ θ ≤ n,

(3.29)

where ΥI ∈ C∞
0 ((0, xmax) × (0, n)) and −1 ≤ ΥI ≤ 1. The existence of such φS(x, s), φE(x, θ, s),

and φI(x, θ, s) is guaranteed since all the above problems are linear with local boundary conditions.
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The boundary and initial conditions of the above three problems imply that −1 ≤ φS , φE , φI ≤ 1.
Substituting φS that satisfies (3.27) into (3.24), we find

∫ xmax

0
vS(x, t)ΥS(x)dx

≤ νS,S

∫ t

0

∫ xmax

0
|vS(x, s)|dxds + νS,E

∫ t

0

∫ xmax

0

∫ ∞

0
|vE(x, θ, s)|dθdxds

+νS,I

∫ t

0

∫ xmax

0

∫ ∞

0
|vI(x, θ, s)|dθdxds,

(3.30)

where νS,S = ‖βS‖∞+‖mS‖∞+‖λ‖∞ sup
s∈[0,T ]

{∫ xmax

0

∫ ∞

0
I1(y, θ, s)dθdy

}
, νS,E = ‖βE‖∞ and νS,I =

‖βI‖∞+‖λ‖∞ sup
s∈[0,T ]

{∫ xmax

0
S2(y, s)dy

}
. Substituting φE that satisfies (3.28) into (3.25), we have

∫ xmax

0

∫ n

0
vE(x, θ, t)ΥE(x, θ)dθdx

≤ νE,S

∫ t

0

∫ xmax

0
|vS(x, s)|dxds + νE,E

∫ t

0

∫ xmax

0

∫ ∞

0
|vE(x, θ, s)|dθdxds

+νE,I

∫ t

0

∫ xmax

0

∫ ∞

0
|vI(x, θ, s)|dθdxds,

(3.31)

where the constants νE,S = ‖λ‖∞ sup
s∈[0,T ]

{∫ xmax

0

∫ ∞

0
I1(y, θ, s)dθdy

}
, νE,E = ‖mE‖∞ + ‖ρE‖∞ and

νE,I = ‖λ‖∞ sup
s∈[0,T ]

{∫ xmax

0
S2(y, s)dy

}
. Substituting φI that satisfies (3.29) into (3.26), we obtain

∫ xmax

0

∫ n

0
vI(x, θ, t)ΥI(x, θ)dθdx

≤ νI,E

∫ t

0

∫ xmax

0

∫ ∞

0
|vE(x, θ, s)|dθdxds + νI,I

∫ t

0

∫ xmax

0

∫ ∞

0
|vI(x, θ, s)|dθdxds,

(3.32)

where the constants νI,E = ‖ρE‖∞ and νI,I = ‖mI‖∞.
Since (3.30) holds for every ΥS , we can for each fixed t choose a sequence {ΥS,k}∞k=1 converging

to ΥS , where

ΥS(x) =





1 if vS(x, t) > 0
0 if vS(x, t) = 0
−1 if vS(x, t) < 0

.

Substituting ΥS,k into (3.30) and using the dominated convergence theorem, we find
∫ xmax

0
|vS(x, t)|dx

≤ νS,S

∫ t

0

∫ xmax

0
|vS(x, s)|dxds + νS,E

∫ t

0

∫ xmax

0

∫ ∞

0
|vE(x, θ, s)|dθdxds

+νS,I

∫ t

0

∫ xmax

0

∫ ∞

0
|vI(x, θ, s)|dθdxds.

(3.33)
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We also note that (3.31) holds for every ΥE , hence we can for each fixed t choose a sequence
{ΥE,k}∞k=1 converging to ΥE , where

ΥE(x, θ) =





1 if vE(x, θ, t) > 0
0 if vE(x, θ, t) = 0
−1 if vE(x, θ, t) < 0

.

Substituting such ΥE,k into (3.31), using the dominated convergence theorem, and using the fact
that the constants νE,S , νE,E and νE,I are independent of n, we find

∫ xmax

0

∫ ∞

0
|vE(x, θ, t)|dθdx

≤ νE,S

∫ t

0

∫ xmax

0
|vS(x, s)|dxds + νE,E

∫ t

0

∫ xmax

0

∫ ∞

0
|vE(x, θ, s)|dθdxds

+νE,I

∫ t

0

∫ xmax

0

∫ ∞

0
|vI(x, θ, s)|dθdxds.

(3.34)

Similarly, we can find
∫ xmax

0

∫ ∞

0
|vI(x, θ, t)|dθdx

≤ νI,E

∫ t

0

∫ xmax

0

∫ ∞

0
|vE(x, θ, s)|dθdxds + νI,I

∫ t

0

∫ xmax

0

∫ ∞

0
|vI(x, θ, s)|dθdxds.

(3.35)

By the fact
∫ ∞

0
e−θdθ = 1 and (3.33)–(3.35), we have

∫ xmax

0

∫ ∞

0
[e−θ|vS(x, t)|+ |vE(x, θ, t)|+ |vI(x, θ, t)|]dθdx

≤ ν

∫ t

0

∫ xmax

0

∫ ∞

0
[e−θ|vS(x, s)|+ |vE(x, θ, s)|+ |vI(x, θ, s)|]dθdxds,

where ν = max{νS,S + νE,S , νS,E + νE,E + νI,E , νS,I + νE,I + νI,I}. By Gronwall’s inequality, we
thus have ∫ xmax

0

∫ ∞

0
[e−θ|vS(x, t)|+ |vE(x, θ, t)|+ |vI(x, θ, t)|]dθdx = 0.

Hence, we have vS = 0 a.e in DS , vE = 0 and vI = 0 a.e. in DEI .

4 Monotone Approximation and Existence

Suppose that (S0
, E

0
, I

0) and (S0, E0, I0) are a pair of nonnegative upper and lower solution of
(2.1), respectively, then by Theorem 3.2 we have

S0(x, t) ≤ S
0(x, t) a.e. in DS ,

E0(x, θ, t) ≤ E
0(x, θ, t) a.e. in DEI ,

I0(x, θ, t) ≤ I
0(x, θ, t) a.e. in DEI .

(4.1)
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We set up two sequences {Sk, Ek, Ik}∞k=1 and {Sk
, E

k
, I

k}∞k=1 by the following procedure:

S
k
t (x, t) + (gS(x, t)Sk(x, t))x = −S

k(x, t)
[
mS(x, t) +

∫ xmax

0

∫ ∞

0
λ(y, θ)Ik−1(y, θ, t)dθdy

]

gS(0, t)Sk(0, t) = F (Sk−1(·, t), Ek−1(·, ·, t), Ik−1(·, ·, t))
S

k(x, 0) = S0(x),

(4.2)

Sk
t (x, t) + (gS(x, t)Sk(x, t))x = −Sk(x, t)

[
mS(x, t) +

∫ xmax

0

∫ ∞

0
λ(y, θ)Ik−1(y, θ, t)dθdy

]

gS(0, t)Sk(0, t) = F (Sk−1(·, t), Ek−1(·, ·, t), Ik−1(·, ·, t))
Sk(x, 0) = S0(x),

(4.3)

E
k
t (x, θ, t) + (gE(x, t)Ek(x, θ, t))x + E

k
θ(x, θ, t) = −[mE(x, t) + ρE(θ)]Ek(x, θ, t)

E
k(x, 0, t) = S

k−1(x, t)
∫ xmax

0

∫ ∞

0
λ(y, θ)Ik−1(y, θ, t)dθdy

E
k(0, θ, t) = 0, E

k(x, θ, 0) = E0(x, θ),

(4.4)

Ek
t (x, θ, t) + (gE(x, t)Ek(x, θ, t))x + Ek

θ(x, θ, t) = −[mE(x, t) + ρE(θ)]Ek(x, θ, t)

Ek(x, 0, t) = Sk−1(x, t)
∫ xmax

0

∫ ∞

0
λ(y, θ)Ik−1(y, θ, t)dθdy

Ek(0, θ, t) = 0, Ek(x, θ, 0) = E0(x, θ),

(4.5)

I
k
t (x, θ, t) + (gI(x, t)Ik(x, θ, t))x + I

k
θ(x, θ, t) = −mI(θ)Ik(x, θ, t)

I
k(x, 0, t) =

∫ ∞

0
ρE(θ)Ek−1(x, θ, t)dθ

I
k(0, θ, t) = 0, I

k(x, θ, 0) = I0(x, θ),

(4.6)

Ik
t (x, θ, t) + (gI(x, t)Ik(x, θ, t))x + Ik

θ(x, θ, t) = −mI(θ)Ik(x, θ, t)

Ik(x, 0, t) =
∫ ∞

0
ρE(θ)Ek−1(x, θ, t)dθ

Ik(0, θ, t) = 0, Ik(x, θ, 0) = I0(x, θ).

(4.7)

The existence of the solutions to the above problems (4.2)–(4.7) follows from standard results, given
the fact that they are all linear problems with local boundary conditions for Sinko-Streifer type
systems.

We first show that
S0(x, t) ≤ S1(x, t) a.e. in DS ,

E0(x, θ, t) ≤ E1(x, θ, t) a.e. in DEI ,

I0(x, θ, t) ≤ I1(x, θ, t) a.e. in DEI .

(4.8)
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Let uS = S0−S1, uE = E0−E1 and uI = I0−I1, then by (4.3), and using the fact that (S0, E0, I0)
is a lower solution of (2.1), we have

∫ xmax

0
uS(x, t)ψS(x, t)dx

≤
∫ t

0

∫ xmax

0
[ψS

s (x, s) + gS(x, s)ψS
x (x, s)−mS(x, s)ψS(x, s)]uS(x, s)dxds

−
∫ t

0

∫ xmax

0
uS(x, s)ψS(x, s)

∫ xmax

0

∫ ∞

0
λ(y, θ)I0(y, θ, s)dθ dy dx ds.

Hence, uS(x, t) satisfies (3.22) with AS(x, t) = −mS(x, t) −
∫ xmax

0

∫ ∞

0
λ(y, θ)I0(y, θ, t)dθdy. Thus,

S0(x, t) ≤ S1(x, t). By (4.5), and using the fact that (S0, E0, I0) is a lower solution of (2.1), we
have

∫ xmax

0

∫ ∞

0
uE(x, θ, t)ψE(x, θ, t)dθdx

≤
∫ t

0

∫ xmax

0

∫ ∞

0
[ψE

s (x, θ, s) + gE(x, s)ψE
x (x, θ, s) + ψθ(x, θ, s)]uE(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
[mE(x, s) + ρE(θ)]uE(x, θ, s)ψE(x, θ, s)dθdxds.

Hence, uE(x, θ, t) satisfies (3.23) with AE(x, θ, t) = −mE(x, t) − ρE(θ). Thus, E0(x, θ, t) ≤
E1(x, θ, t). By (4.7), and using the fact that (S0, E0, I0) is a lower solution of (2.1), we have

∫ xmax

0

∫ ∞

0
uI(x, θ, t)ψI(x, θ, t)dθdx

≤
∫ t

0

∫ xmax

0

∫ ∞

0
[ψI

s(x, θ, s) + gI(x, s)ψI
x(x, θ, s) + ψI

θ(x, θ, s)]uI(x, θ, s)dθdxds

−
∫ t

0

∫ xmax

0

∫ ∞

0
mI(θ)uI(x, θ, s)ψI(x, θ, s)dθdxds.

Hence, I0(x, θ, t) satisfies (3.23) with AE(x, θ, t) = −mI(θ). Thus, I0(x, θ, t) ≤ I1(x, θ, t). Similarly,
we can show that

S
0(x, t) ≥ S

1(x, t) a.e. in DS ,

E
0(x, θ, t) ≥ E

1(x, θ, t) a.e. in DEI ,

I
0(x, θ, t) ≥ I

1(x, θ, t) a.e. in DEI .

(4.9)

By (4.2)–(4.9), we can see that (S1
, E

1
, I

1) and (S1, E1, I1) are a pair of upper and lower solutions
of (2.1), respectively. Hence, by Theorem 3.2 we have

S1(x, t) ≤ S
1(x, t) a.e. in DS ,

E1(x, θ, t) ≤ E
1(x, θ, t) a.e. in DEI ,

I1(x, θ, t) ≤ I
1(x, θ, t) a.e. in DEI .

(4.10)
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We then assume that for some k, (Sk
, E

k
, I

k) and (Sk, Ek, Ik) are a pair of upper and lower
solutions of (2.1), respectively. Proceeding analogously, we can first show that

Sk(x, t) ≤ Sk+1(x, t) and S
k(x, t) ≥ S

k+1(x, t) a.e. in DS ,

Ek(x, θ, t) ≤ Ek+1(x, θ, t) and E
k(x, θ, t) ≥ E

k+1(x, θ, t) a.e. in DEI ,

Ik(x, θ, t) ≤ Ik+1(x, θ, t) and I
k(x, θ, t) ≥ I

k+1(x, θ, t) a.e. in DEI ,

(4.11)

and then by (4.2)–(4.7) and (4.11), we can claim that (Sk+1
, E

k+1
, I

k+1) and (Sk+1, Ek+1, Ik+1) are
a pair of upper and lower solution of (2.1), respectively. Thus, we obtain two monotone sequences
{Sk, Ek, Ik} and {Sk

, E
k
, I

k} which satisfy

S0 ≤ S1 ≤ · · · ≤ Sk ≤ · · · ≤ S
k ≤ · · · ≤ S

1 ≤ S
0 a.e. in DS ,

E0 ≤ E1 ≤ · · · ≤ Ek ≤ · · · ≤ E
k ≤ · · · ≤ E

1 ≤ E
0 a.e. in DEI ,

I0 ≤ I1 ≤ · · · ≤ Ik ≤ · · · ≤ I
k ≤ · · · ≤ I

1 ≤ I
0 a.e. in DEI .

From the monotonicity of the sequences {Sk, Ek, Ik} and {Sk
, E

k
, I

k} it follows that there exist
functions (S,E, I) and (S, E, I) such that (Sk, Ek, Ik) → (S,E, I) and (Sk

, E
k
, I

k) → (S, E, I).
Clearly, S ≤ S a.e. in DS , E ≤ E and I ≤ I a.e. in DEI . On the other hand, by the dominated
convergence theorem, we know that (S, E, I) and (S, E, I) are also an upper and lower solutions
of (2.1), respectively. Hence, by Theorem 3.2, we have S ≥ S a.e. in DS , E ≥ E and I ≥ I a.e.
in DEI . Thus, S = S a.e. in DS , E = E and I = I a.e. in DEI . Defining this common limit
by (S,E, I), then we see that it satisfies (2.2)–(2.4) for every nonnegative functions ψS ∈ C1(DS),
ψE ∈ C1

0,r(D
EI) and ψI ∈ C1

0,r(D
EI). By the property of mollifiers and the dominated convergence

theorem, we can easily show that the limit satisfies (2.2)–(2.4) for every function φS ∈ C1(DS),
φE ∈ C1

0,r(D
EI) and φI ∈ C1

0,r(D
EI). Hence, (S, E, I) is the solution of (2.1).

Based on the above discussion and Theorem 3.4, we have the following existence-uniqueness
result.

Theorem 4.1. Suppose that all the assumptions (H1)–(H5) hold. We assume that (S0
, E

0
, I

0)
and (S0, E0, I0) are a pair of nonnegative upper and lower solution of (2.1), respectively. Then,
there exist monotone sequences {Sk, Ek, Ik} and {Sk

, E
k
, I

k} which converge to the unique solution
(S,E, I) of (2.1).

Remark 4.2. For the initial data S0(x) = ηS exp(−αSx), E0(x, θ) = ηE exp(−αEx) exp(−θ) and
I0(x, θ) = ηI exp(−αIx) exp(−θ) with some positive constants αS , αE , αI , ηS , ηE and ηI , we can
construct the nonnegative lower and upper solution as follows:

(S(x, t), E(x, θ, t), I(x, θ, t)) = (0, 0, 0),

S(x, t) = aS exp(bSt) exp(−dSx),

E(x, θ, t) =
1

1 + θ2
aE exp(bEt) exp(−dEx),

I(x, θ, t) =
1

1 + θ2
aI exp(bIt) exp(−dIx),
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with positive constants aS , aE , aI , bS , bE , bI , dS , dE and dI which are to be determined. First we
choose positive constants bE and bI large enough such that

bE ≥ 1 + max
(x,t)∈D

|gE
x (x, t)|+ αE max

(x,t)∈D
gE(x, t),

bI ≥ 1 + max
(x,t)∈D

|gI
x(x, t)|+ αI max

(x,t)∈D
gI(x, t),

where D = [0, 1]× [0, T ]. Fixing these constants bE and bI , then we choose bS sufficiently large so
that

bS ≥ max
{

max
(x,t)∈D

|gS
x (x, t)|+ αS max

(x,t)∈D
gS(x, t), bE , bI

}
.

The positive constant aE is chosen so that aE ≥ ηE , and aI is chosen so that

aI ≥ max
{

ηI ,
π

2
‖ρE‖∞ exp(bET )aE

}
.

The positive constant aS is then chosen to satisfy aS ≥ {ηS , aE , aI}. We then fix xmax sufficiently
small so that

xmax ≤ min

{
1,

2mint∈[0,T ] g
S(0, t)

9‖βS‖∞ ,
4mint∈[0,T ] g

S(0, t)
9π‖βE‖∞ ,

4mint∈[0,T ] g
S(0, t)

9π‖βI‖∞ ,
4aE

3π‖λ‖∞aSaI
exp(−bS − bI)T )

}
,

where the L∞ norm of βS is defined on (0, 1), the L∞ norms of βE , βI and λ are all defined on

(0, 1) × (0,∞). Note that since lim
dS→0+

1− exp(−dSxmax)
dS

= xmax, we can choose dS sufficiently

small so that

dS ≤ αS and
1− exp(−dSxmax)

dS
≤ 3

2
xmax.

Similarly, dE is chosen sufficiently small enough so that

1− exp(−dExmax)
dE

≤ 3
2
xmax and dE ≤ min{αE , dS}.

Fixing these constants for dS and dE , then we choose dI such that

1− exp(−dIxmax)
dI

≤ 3
2
xmax and dI ≤ min{αI , dE}.

With all these positive constants fixed as above, we can easily show that (S(x, t), E(x, θ, t), I(x, θ, t))
and (S̄(x, t), Ē(x, θ, t), Ī(x, θ, t)) are a pair of nonnegative lower and upper solutions of (2.1), re-
spectively.
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5 Concluding Remarks

In the above presentation we developed a comparison principle and constructed monotone sequences
to establish the existence and uniqueness of solutions for a class of SEI epidemic models in which
individuals in the exposed state and infectious state are structured by size and class age (or residency
time). A special case of the general class is the biomass/viral infection model of [6]. We believe
that this method can be applied to a more generalized version of this model in which mortality
rates and birth rates depend on the total population or total biomass of each state; this would yield
results under even more reasonable and realistic assumptions. Note that we defined coupled upper
and lower solutions for the equation in the susceptible state because of the nonlinear term in this
equation. If we wish to apply this method to a more general case, we may need to define totally
coupled upper and lower solutions for the equations of all the states. Because of the complexity of
our model, there are other issues we have not considered in this paper such as calculating the basic
reproduction ratio to determine if the disease persists or dies out. Nor have we considered control
of the population environment to yield maximum (for the case of the biomass/vaccine production
problem) or minimum (for the case of epidemic prevention among healthy populations) infected
biomass. These and other issues are the subject of current efforts.

There are other methods available in the literature that can be used to prove existence and
uniqueness of solutions to problems such as (2.1). We have discussed some of these in the intro-
ductory section. Weak solutions and semigroup theory have been used in [7, 8] to prove existence
and uniqueness for a classical size structured population model by computing the existence of the
solution semigroup in an extrapolation space. In [9] a classical size structured population model
that includes non-observable characteristics responsible for variations in growth rates for individ-
uals of the same size is investigated. Well-posedness of this model and a nonlinear perturbation
of it is proved. Our future endeavors will include investigation of the use of weak formulations
and nonlinear semigroup theory to establish existence, uniqueness and continuous dependence of
solutions to problems such as (2.1). A sensitivity analysis framework is also under development.
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